52 research outputs found

    High efficiency compression for object detection

    Full text link
    Image and video compression has traditionally been tailored to human vision. However, modern applications such as visual analytics and surveillance rely on computers seeing and analyzing the images before (or instead of) humans. For these applications, it is important to adjust compression to computer vision. In this paper we present a bit allocation and rate control strategy that is tailored to object detection. Using the initial convolutional layers of a state-of-the-art object detector, we create an importance map that can guide bit allocation to areas that are important for object detection. The proposed method enables bit rate savings of 7% or more compared to default HEVC, at the equivalent object detection rate.Comment: The paper is published in IEEE ICASSP 18

    Can you tell a face from a HEVC bitstream?

    Full text link
    Image and video analytics are being increasingly used on a massive scale. Not only is the amount of data growing, but the complexity of the data processing pipelines is also increasing, thereby exacerbating the problem. It is becoming increasingly important to save computational resources wherever possible. We focus on one of the poster problems of visual analytics -- face detection -- and approach the issue of reducing the computation by asking: Is it possible to detect a face without full image reconstruction from the High Efficiency Video Coding (HEVC) bitstream? We demonstrate that this is indeed possible, with accuracy comparable to conventional face detection, by training a Convolutional Neural Network on the output of the HEVC entropy decoder

    Scalable Video Coding for Humans and Machines

    Full text link
    Video content is watched not only by humans, but increasingly also by machines. For example, machine learning models analyze surveillance video for security and traffic monitoring, search through YouTube videos for inappropriate content, and so on. In this paper, we propose a scalable video coding framework that supports machine vision (specifically, object detection) through its base layer bitstream and human vision via its enhancement layer bitstream. The proposed framework includes components from both conventional and Deep Neural Network (DNN)-based video coding. The results show that on object detection, the proposed framework achieves 13-19% bit savings compared to state-of-the-art video codecs, while remaining competitive in terms of MS-SSIM on the human vision task.Comment: 6 pages, 5 figures, IEEE MMSP 202

    The Warped Plane of the Classical Kuiper Belt

    Full text link
    By numerically integrating the orbits of the giant planets and of test particles over a period of four billion years, we follow the evolution of the location of the midplane of the Kuiper belt. The Classical Kuiper belt conforms to a warped sheet that precesses with a 1.9 Myr period. The present-day location of the Kuiper belt plane can be computed using linear secular perturbation theory: the local normal to the plane is given by the theory's forced inclination vector, which is specific to every semimajor axis. The Kuiper belt plane does not coincide with the invariable plane, but deviates from it by up to a few degrees in stable zones. For example, at a semimajor axis of 38 AU, the local Kuiper belt plane has an inclination of 1.9 deg and a longitude of ascending node of 149.9 deg when referred to the mean ecliptic and equinox of J2000. At a semimajor axis of 43 AU, the local plane has an inclination of 1.9 deg and a nodal longitude of 78.3 deg. Only at infinite semimajor axis does the Kuiper belt plane merge with the invariable plane, whose inclination is 1.6 deg and nodal longitude is 107.7 deg. A Kuiper belt object keeps its inclination relative to the Kuiper belt plane nearly constant, even while the latter plane departs from the trajectory predicted by linear theory. The constancy of relative inclination reflects the undamped amplitude of free oscillation. Current observations of Classical Kuiper belt objects are consistent with the plane being warped by the giant planets alone, but the sample size will need to increase by a few times before confirmation exceeds 3-sigma in confidence. In principle, differences between the theoretically expected plane and the observed plane could be used to infer as yet unseen masses orbiting the Sun, but carrying out such a program would be challenging.Comment: Astronomical Journal, in press. This version contains more details in the abstract and minor proof correction

    DFTS: Deep Feature Transmission Simulator

    Get PDF
    Collaborative intelligence is a deployment paradigm for deep AI models where some of the layers run on the mobile terminal or network edge, while others run in the cloud. In this scenario, features computed in the model need to be transferred between the edge and the cloud over an imperfect channel. Here we present a simulator to help study the effects of imperfect packet-based transmission of deep features. Our simulator is implemented in Keras and allows users to study the effects of both lossy packet transmission and quantization on the accuracy

    A Dataset of Labelled Objects on Raw Video Sequences

    Get PDF
    We present an object labelled dataset called SFU-HW-Objects-v1, which contains object labels for a set of raw video sequences. The dataset can be useful for the cases where both object detection accuracy and video coding efficiency need to be evaluated on the same dataset. Object ground-truths for 18 of the High Efficiency Video Coding (HEVC) v1 Common Test Conditions (CTC) sequences have been labelled. The object categories used for the labeling are based on the Common Objects in Context (COCO) labels. A total of 21 object classes are found in test sequences, out of the 80 original COCO label classes. Brief descriptions of the labeling process and the structure of the dataset are presented
    • …
    corecore